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Abstract—Knowledge about the current and future states of a
radio channel takes the reliability of a communications system
to a new level. A Radio Environment Map (REM) contains
information about the channel state in the spatial domain
for a given environment. Given a known user trajectory, this
information can be used for channel prediction. In this work,
we investigated the two primary limitations to this approach:
the required spatio-temporal stationarity of the channel and the
high localization accuracy of the user. The channel stationarity
is quantified by repeated channel measurements. The high mea-
surable consistency indicates the value of REMs in non-changing
environments. Based on a high-resolution REM that we measured
in an office environment, we quantify the impact of one- and two-
dimensional localization errors on the resulting prediction error.
With the results shown, localization accuracy requirements can
be derived given the target channel prediction accuracy. Also,
the results help to determine the required spatial resolution of
REM measurements in practice.

Index Terms—Radio Environment Maps, Radio Channel,
Channel Measurements, Channel Prediction, Indoor.

I. INTRODUCTION

Thanks to current radio technologies, e.g., 5G, an ongoing
automation of industrial factories and warehouses with au-
tonomous robots can be observed. Thereby, the remote control
of robots, e.g., of single Automated Guided Vehicles (AGVs)
or of AGV fleets for cooperative transports, is an important use
case for wireless communications in an industrial context [1].
Such closed-loop control systems have tight requirements
regarding latency and reliability, which can be served by Ultra-
Reliable Low-Latency Communications (URLLC) [2].

As a consequence of mobility, industrial robots experience
a time-varying radio channel. The time-varying attenuation of
radio signals by the channel is one cause for communication
outages as a consequence of insufficient receive power. With
explicit knowledge of the radio channel conditions as well
as future channel states, reliability-increasing measures can
be taken to prevent such outages. A possible approach could
be to temporarily increase the transmit power or to adapt the
Modulation Coding Scheme (MCS) when a critical attenuation
through the radio channel is imminent. To take such mea-
sures proactively, knowledge of critical channel conditions is
required in advance. A possible solution is channel prediction,
where the latest available channel observations are used to

extrapolate the channel into the near future [3]. On one
hand, the prediction horizon, i.e., the time we can predict
in the future, is limited by the temporal correlation of the
radio channel. On the other hand, the higher the prediction
horizon and the precision of the prediction, the more value
it generates for a communications system. To overcome this
limitation, we investigate to use long-term correlations in
form of existing information from Radio Environment Maps
(REMs) to predict the channel into the future. In sparsely
changing environments, such as industrial halls, a high spatio-
temporal channel stationarity, i.e., a very similar channel at the
same positions over time can be observed. If a REM exists and
the position of the robot is known, the channel can be predicted
for future locations of the robot based on its planned trajectory.
Especially in industrial environments, trajectories of AGVs
are likely to repeat and to be constrained to certain areas. In
addition, high-precision localization for indoor environments
is a set target for 6G systems [4]. In this context, building
REMs, e.g., by crowdsourcing, seems reasonable.

To assess the usability of high-resolution REMs for chan-
nel predictions, the assumption of spatio-temporal channel
stationarity has to be researched first. Furthermore, since
this prediction method is based on a precise localization,
the impact of erroneous localization on the predictions is to
be investigated. In the literature, measuring radio channels
such that REMs can be constructed subsequently is a well
known research problem. [5]–[7] Thereby, the main motivation
behind existing work is to perform indoor localization of
devices/robots using mechanisms such as fingerprinting [8],
or to predict the REMs for unseen places. Little research
has been conducted on approaches using existing data for
indoor communications systems, especially in the context of
channel prediction. In [9], the authors propose to use the
knowledge about the radio environment for planning the paths
of autonomous robots to optimize the receive power during the
trajectory and to perform transmit power adaption based on the
radio map. However, the work is restricted to simulations in
a simplified radio environment. In [10], point-wise measured
data is used for channel predictions. But, the influence of
localization error was investigated only for a constant position
error of 6 cm and the distance of measured points in space
was not resulting in a high-resolution radio map.978-1-6654-3540-6/22 © 2022 IEEE
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Fig. 1: Map of the office environment the AGV is moving in. The
trajectory is marked in green while the position of the receiving unit
is given as red square.

To address the research question whether REMs can be
used for channel predictions, we present the results of a
measurement campaign conducted for this purpose. Thereby,
we provide the following contributions:

• Channel stationarity is shown to be a valid assumption
in real-world measured channels by correlating repeated
measurements.

• Based on the stationarity, we show that measuring a REM
is possible with a dynamic measurement system while
exceeding the spatial resolution of existing work.

• Having a channel prediction in mind, the impact of one-
and two-dimensional localization errors is investigated
systematically. The results serve as localization require-
ments needed to bound the prediction error.

II. MEASUREMENT SYSTEM

The channel sounding system which was used to collect the
measurement data was first described in [11]. A Radio Fre-
quency (RF) transmitter is placed on top of an AGV. During
the measurements, the AGV moves on a predefined trajectory
and the transmitter periodically radiates a training signal, in
this case a Zadoff-Chu sequence. Due to the knowledge about
the training signal at the receiver, the channel impulse response
(CIR) can be determined by correlating the received signal
samples with the training signal. One of the main differences
to the measurements performed in [11] is the measurement
environment. For this work, measurements were conducted in
a corridor of an office environment at Technische Universität
Dresden. [12] A map of the building environment showing
the surrounding rooms, the trajectory of the AGV as well as
the position of the receiving point are shown in Fig. 1. The
maximum usable track has an extension of more than 25m
in horizontal direction and 0.6m in vertical direction. In this
work, we utilize the track marked with a green solid line in
Fig. 1. The resulting lap consists of an upper and a lower
straight and has a total length of almost 70m. The vehicle
moves with a constant speed of 0.8m/s. The omnidirectional
transmit antenna on the AGV is mounted at a height of 0.5m
above the ground. Omnidirectional antennas of the same type
are used for the receiving units mounted at a height of 2.5m
and are thus similar to a typical Access Point (AP) setup.

Transmitter and receiver functionalities are based on a
clock-driven FPGA implementation deployed on Software-

Defined Radios (SDRs) of type USRP 2974 from National
Instruments. Sampling is performed with a frequency of
100MHz around a carrier frequency of 3.75GHz. Thus, the
spectrum between 3.7GHz to 3.8GHz for industrial campus
networks is covered. Thanks to the clock-driven implemen-
tation, we are able to measure CIRs with a constant and
high measurement rate of 1 kHz. Hence, the system captures
one CIR per millisecond which equals a distance of 0.8mm
between consecutive measurement points. With help of a
consistent measurement rate in combination with a constant
motion of the measurement vehicle, we study the repro-
ducibility of the measurements and thus how stationary the
radio channel is. Thereby, we are interested in the wideband
receive power in the first place. The signal receive power
is computed based on the measured CIRs h[n], where n is
the delay index with n ∈ {0, 1, ..., N − 1} and N = 512.
First, the delay-domain CIR h[n] is transformed into a channel
frequency response H[m] via Fast Fourier Transform (FFT),
where m ∈ {0, 1, ..., N − 1} is the index of the frequency bin
in the spectrum H . The total receive power Prx of the signal
is calculated by summing up the squared magnitudes of all N
frequency bins in the spectrum. To calculate the receive power
of a dedicated band within the spectrum, e.g., reaching from
bin M1 to M2, we compute

Prx =

M2∑
m=M1

|H[m]|2 . (1)

The outer 10% of the spectrum are attenuated by hardware-
related filter effects respectively. To compensate this effect,
we consider the inner 400 frequency bins, i.e., M1 = 56 and
M2 = 455, resulting in a bandwidth of 78.125MHz ≈ 80MHz.
It has to be noted that the resulting absolute receive powers of
our measurements are not subject to any calibration. Thus, the
absolute level of Prx is difficult to compare with other mea-
surement systems. However, since relative level differences are
not affected, this fact is no limitation for the results presented
in this paper. Both, the study of stationarity and the influence
of localization on prediction are based on relative differences
in receive power and are thus generally valid.

The measurement data of this campaign are freely available
as a data set. [13] The source code to reproduce the results is
also freely available.1

III. SPATIO-TEMPORAL CHANNEL STATIONARITY

The fundamental question driving this work is about the
value of existing radio channel information for channel pre-
diction. To address this question, we investigate the spatio-
temporal stationarity of the radio channel. In other words,
how similar is a real-world channel at the same local position
at different points in time, e.g., if the AGV is repeating its
trajectory multiple times. To answer this question, we rely on
the ability of our measurement setup to reproduce consistent

1https://gitlab.vodafone-chair.org/friedrich.burmeister/impact-of-
localization-error-on-rem-based-radio-channel-predictions.git
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Fig. 2: Matching receive power time series of 3 consecutive measure-
ment rounds as indicator for measurement reproducibility.

BW [MHz] ρ MAE [dB] Median [dB] Data samples

80 0.9984 0.179 0.133 1.59e5

40 0.9979 0.229 0.164 3.18e5

20 0.9971 0.278 0.192 6.36e5

10 0.9963 0.321 0.213 1.27e6

5 0.9953 0.358 0.229 2.54e6

TABLE I: Round correlations, mean deviation and median deviation
between rounds compared for different bandwidths.

measurement results. The argumentation is as follows: if
we are able to measure repeating results, reusing previous
information about the radio environment is possible.

To assess stationarity, the AGV performed three rounds of
measuring. Between each round there was a delay of two
minutes. The position of the antenna on the surface of the
AGV was not varied between the measurement repetitions.
Furthermore, the environment remained unchanged during the
measurement repetitions. To eliminate any influence of moving
objects on the radio environment, such as moving persons, the
measurements were conducted at night so that no people were
present in the office environment.

The receive power time series from the same portion of the
three rounds are depicted in Fig. 2. The receive power is deter-
mined for a bandwidth of 80MHz. Looking at Fig. 2 already
indicates the excellent consistency of delayed measurement
rounds. Not only slow and large attenuations and gains of the
receive power coincide, but also small and fast changes are
matching. What seems like a random fluctuation recurs round
after round. To quantify the consistency of the results, we
compute the Pearson correlation coefficient ρ between all three
rounds and determine the mean and median (50th percentile) of
the absolute deviation between the time series. The results are
given in Tab. I. Since we are also interested in the consistency
of the frequency spectra, we compute the receive power from
narrower frequency bands and evaluate the correlation and
deviations between the rounds for smaller bands. The results
are also given in Tab. I. Due to a growing impact of noise
for smaller bandwidths, the correlation slowly degrades but is
still on a very high level of 99.53% for bands with 5MHz
of bandwidth. Also the absolute deviation slowly increases
but is still in a negligible order of magnitude compared to

AGV

AGV

v

vx
y

x=0

Fig. 3: Sequentially scanning the radio environment by shifting the
antenna on a moving AGV

the receive power range. The data of repetitive measurements
in [11] employing the same measurement system showed the
same channel stationarity but in an industrial environment.

What conclusions are we able to draw from the observation
that measurement results are reproducible? In the first place,
the reproducibility is an indicator for the quality and accuracy
of the measurement system, i.e., the motion of the vehicle
as well as the sampling works reliable. It also shows that
the Signal-to-Noise Ratio (SNR) is high enough during the
measurements such that observed receive powers and receive
power deviations are caused by the radio channel. Other
influences such as measurement noise do not have a significant
effect. Channel measurements are indeed reproducible and the
channel is spatio-temporal stationary.

IV. HIGH-RESOLUTION RADIO ENVIRONMENT MAP

Due to channel stationarity, it is shown that the receive
power is not varying over time at a given position in case of
a static environment. This fact reinforces the value of existing
channel knowledge at a given position for the aim of channel
predictions. In order to allow predictions not only for a single
trajectory and a single spatial direction, channel data is needed
for more than just a single measured line. Instead, channel
data needs to be acquired for a continuous two-dimensional
area. Moreover, this is necessary if we want to study the
impact of localization error in two spatial dimensions later. If
the environment remains unchanged during the measurements,
the channel stationarity allows to measure single trajecto-
ries sequentially and combine them to a radio channel map
subsequently. In this section, we introduce the measurement
procedure to build a two-dimensional radio channel map
subsequently and briefly discuss the resulting map.

A. Sequential Measurement Approach

As shown in Fig. 1, the measurement track has an elongated
shape with a long lower straight and a long upper straight,
where the AGV moves counter-clockwise. Both straights are
separated by a distance of 0.6m. The surface of the AGV has
a width of 44 cm and the AGV follows the line centered. The
transmit antenna can be placed freely on the top of the AGV as
illustrated in Fig. 3. Furthermore, there is an additional carrier
surface (width of 92 cm) to extent the top surface of the AGV
such that antenna positions next to the vehicle are measurable.
The initial position of the antenna is in the middle between
the two lanes. The antenna position remains unchanged during
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Fig. 4: Resulting radio environment maps for both straights around
AP 2 after sequentially measuring the radio channel.

a measurement round. After a round is completed, the x
position of the antenna is shifted by ∆x on the surface towards
the wall before the next round starts. This procedure was
repeated until the outer edge of the carrier was reached. For
the selection of ∆x, a target correlation level between the
lanes was set. A sufficient correlation is needed to align the
individually measured lanes during post-processing. With an
offset of ∆x = 1 cm per measurement round, a correlation
coefficient of 0.96 for adjacent lanes results which is sufficient
to align the lanes afterwards.

B. Radio Channel Map Construction
After measuring the radio channel sequentially lane by lane,

the measurement data is combined in a REM. Since the data
of one lap is a contiguous time series, we first divide the lap
so that the lower and upper straights are available individually.
The resulting time series of the upper straight is then flipped
because the AGV moves in the opposite direction here. In the
next step, all receive power time series are sorted in ascending
order according to their x coordinate. Starting from the lane
with the smallest x, the single time series are aligned iteratively
with the help of cross-correlation. For example, the second
lane is aligned to the first lane. Then, the third lane is aligned
to the second lane and so on. The high correlation between the
lanes allows to find the constant offset per round originating
from the slightly different measurement start. Since there is a
small gap between the straights, this procedure is done for
both straights separately. The resulting receive powers per
coordinate are then illustrated as heat maps in Fig. 4. Note
that the gap between the two maps does not coincide with
the real distance but rather highlights that the two maps are
created separately.

As a result of the described measurement methodology,
two 0.92m wide and over 18m long receive power scans
of the environment, measured from the AP, are created. The
achieved spatial resolution is 10mm in x and 0.8mm in y.
Visual inspection of this receive power map allows for some
interesting conclusions. First of all, a wave propagation pattern
around AP 2 in the corridor becomes clearly visible. AP 2 is
approx. located at position ⟨100cm, 1180cm⟩ on the map. A
shadowed area underneath the AP as well as a high receive
power in close proximity to the receiving unit is observable.
Further away from the access point, an interference pattern
caused by multi-path propagation is clearly visible.

By looking at the power time series of the measurements
only along the driving dimension, i.e., in the y-direction as it
was shown in Fig. 2, large and fast changes of the received
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〈x, y〉 〈x′, y′〉

〈x̂, ŷ〉 〈x̂′, ŷ′〉

Fig. 5: Due to position errors εx and εy , the estimated position ⟨x̂, ŷ⟩
does not coincide with the true position ⟨x, y⟩. The future position
based on the trajectory is thus false and a prediction error occurs.

power were visible. The measured radio map explains these
occurrences. By driving on a horizontal line in y-dimension,
the vehicle passes constructive and destructive interference
positions. Depending on the x-coordinate of the lane, the angle
between the interference stripes and the lane changes. Thus,
the duration of how long a user experiences a constructive or
destructive interference during the drive varies accordingly.

If we consider the usage of spatial channel information
for predictions of the radio channel depending on the vehicle
trajectory, one has to take the positioning uncertainty of the
vehicle into account. Therefore, we investigate the influence
of the positioning error on the predictions in the next section.

V. IMPACT OF LOCALIZATION ERRORS

Considering the measured REM for channel predictions
based on the planned trajectory of the vehicle, knowing the
exact position of the AGV is essential. Assuming an error-free
localization, the expected receive power is simply extracted
from the map for a static environment. With this approach, the
prediction error is theoretically independent of the prediction
horizon along an arbitrary trajectory (and thus of the coherence
time), but only depends on the localization error in x and y
dimension as shown in Fig. 5. In a real system, the position
of the vehicle must be estimated. Even though localization
will improve in upcoming radio generations, there will in-
evitably be an error in the position estimation and the question
arises how this error affects the channel prediction accuracy.
Within the scope of this work, we investigate the impact of
the localization error in two stages. First, a one-dimensional
localization error εy in the direction of the vehicle’s trajectory
is considered. Second, the impact of localization errors εx and
εy in both dimensions are investigated.

A. One-dimensional Localization Error

For the one-dimensional case, we distinguish between a
constant localization error and a possibly varying localization
error along the direction of motion. Starting with the constant
error, the receive power deviations between a position ⟨x, y⟩
and the position ⟨x, y + εy⟩ are evaluated. The difference
E(x, y, εy) = |Prx(x, y+ εy)−Prx(x, y)| is referred to as the
prediction error at position ⟨x, y⟩. This is done for all possible
positions ⟨x, y⟩ in both maps and for different localization
errors εy . As a result, there is an empirical prediction error
distribution per localization error combined from both maps.
Since a vehicle can move in positive and negative y-direction
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Fig. 6: Mean and percentiles of occurring prediction error distribu-
tions based on different one-dimensional, constant localization errors.

in our scenario, the absolute difference is evaluated. A positive
error in one direction refers to a negative prediction error in
the opposite direction.

From the empirical prediction error distributions, we deter-
mine percentiles and illustrate them in Fig. 6. There is a clear
difference visible between the mean absolute error and higher
percentiles, e.g., the 99% percentile, which are especially
important in the context of URLLC applications. Depending on
the prediction accuracy we want to achieve, we need to bound
the localization error. As an example, if a probability of 99%
for prediction errors smaller than 8 dB is targeted, εy has to be
kept lower than 125mm. From the results it is noteworthy that
already a mislocalization of 10 cm can make the channel gain
differ by 10 dB in this rather simple environment for a signal
bandwidth of 80MHz. To assess the measurement results, we
refer to the localization performance achieved by a state-of-
the-art localization based on a Light Detection And Ranging
(LiDAR) sensor in [14]. The mean localization error was 4 cm
and the maximum error is given with 12 cm for an indoor
environment and a comparable speed. With this accuracy, 90%
of the prediction errors are not exceeding 5 dB.

In addition to the constant localization error, we investigate
a localization error that can vary but is limited by a maximum
error εy,max. The intention is that a localization error is
typically not fixed but follows a bounded random process. The
maximum and thus worst prediction error does not necessarily
occur at the maximum localization error, but also occurs
at smaller localization errors. Please note, that this leads to
a worst-case evaluation. Therefore, the maximum prediction
error Emax between position ⟨x, y⟩ and position ⟨x, y+εy,max⟩
is evaluated, i.e., we determine

Emax(x, y, εy) = max
εy∈Σy

(|Prx(x, y + εy)− Prx(x, y)|) (2)

with Σy = {0, ..., εy,max} [mm] for all possible positions
⟨x, y⟩ in the maps. This again results in new maximum predic-
tion error distributions per localization error that we evaluated
in Fig. 7. There, the varying localization error is compared with
the constant localization error. For errors exceeding 50mm,
the variable error causes higher prediction errors.
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Fig. 7: Mean and percentiles of occurring prediction error distribu-
tions based on different one-dimensional, bounded localization errors.

B. Two-dimensional Localization Error

Next, the radio map from Sec.IV is used to consider the im-
pact of localization errors in both dimensions on the prediction
error. This is relevant for the following two reasons: 1) In a
real scenario, an AGV can move in all directions. Thereby,
both x and y coordinates change and are to be estimated. 2)
Both coordinates are subject to the localization error.

In this work, we assume that the localization error behaves
identical in both dimension. Sec. V-A shows that the maximum
prediction error occurs with variable localization error. Since
we focus on the maximum and thus worst prediction error, we
determine the maximum receive power deviation in a bounded
area around a position ⟨x, y⟩, i.e., we determine

Emax(x, y, εx, εy) =

max
εx∈Σx,εy∈Σy

(|Prx(x+ εx, y + ε)− Prx(x, y)|) (3)

with Σx = Σy = {−εx,max, ..., εx,max} [mm] for all possible
positions ⟨x, y⟩ in the map.

Note again, that this evaluation results in a worst-case
assessment for the maximum possible errors. The impact
of the two-dimensional localization error on the prediction
error is shown in Fig. 8. For comparison, the maximum one-
dimensional error curves are presented. The mean as well as
percentiles indicate a clear increase of the prediction error by
approximately 6 dB to 7 dB. The interference patterns in the
radio map shown in Fig. 4 provide the explanation for the
deviation. High prediction errors occur if the direction of the
resulting localization error is perpendicular to the interference
stripes. By looking at horizontal errors εy as it was done
in Sec. V-A, the angles between trajectory and interference
stripes do not cause the maximum possible receive power
deviations. The radio channel shows a significantly different
spatial variation depending on the spatial direction. Thus, we
conclude that the directionality of the localization error has a
large impact on the prediction error depending on the envi-
ronment geometry. Considering the localization performance
from [14], the maximum possible prediction errors are much
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higher compared to the one-dimensional case. Even the good
mean localization performance of 4 cm makes that 50% of the
maximum prediction errors will exceed 5 dB and the highest
prediction errors will exceed 17 dB for this accuracy.

VI. CONCLUSION

In this work, an indoor measurement campaign for analyzing
REMs in the context of channel predictions was presented.
With the measurement system shown, the assumption of
spatio-temporal stationarity of the radio channel was verified
in the whole static measurement environment. In addressing
the research question of whether REMs are usable for channel
prediction, the results show that this approach is promising in
static environments.

Even though the stationarity shown motivates the utilization,
the performance of this prediction methodology is limited
by the localization accuracy. To quantify the impact of the
localization, we made a worst-case evaluation of the mea-
surements by looking at the maximum occurring prediction
errors. Even for localization errors of few centimeters only, the
prediction error can exceed 10 dB, emphasizing the need for
accurate localization to bound the prediction error. However,
a position-dependent and direction-dependent spatial variation
of the receive power is observable. We therefore conclude that
the required localization accuracy is varying depending on
the channel variation through the environment. This finding
relaxes the localization requirements in regions where the
spatial correlation is detected to be high.

Based on the methods and results presented, a variety of
future investigations arise. For URLLC, very accurate predic-
tions are required and hence REMs with very high resolu-
tion. However, measuring at this resolution is a hindrance to
practical application. With the presented high-resolution REM
available, we can study the impact of reducing the resolution
on the prediction error. Furthermore, we want to dispense
with the assumption of a static environment and investigate
the usability of REMs for channel predictions in an envi-
ronment that experiences static and dynamic changes. Initial
experiments show that the impact of moving objects in the

environment is spatially limited. Inspired by this observation,
the detection and identification of occurring non-stationarities,
i.e., of environment deviations, is thereby a topic we will
investigate with our measurement setup. In this work, we
focused on the evaluation of wideband signal powers. In the
future, we will include the frequency spectrum information per
position into our analysis.
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